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Let G = (V(G), E(G)) be a graph.
Definition
A partition (Cy, ..., Ck) of V(G) is an equitable partition with

quotient matrix S = (Sj);_, iff every element of C; is adjacent
with exactly Sj; elements of C;.

Equitable partitions ~ regular partitions ~ partition designs ~
perfect colorings ~ ...
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A — adjacency matrix of the graph; C — incidence matrix of an

equitable partition with quotient matrix S.
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Equitable partitions in coding theory

o Coset partition of a linear (Z4-linear) code is an equitable
partition.
Distance partition of a completely regular code is an equitable
partition (with 3-diagonal quotient matrix). E.g., perfect
codes, nearly perfect codes.

0 d
1-perfect codes.< 1 d-1 >

0n 0 O
! : 1 0 n—1 O
distance-5 Preparata-like codes: 0 2 n-3 1
00 n O
Any distance-3 code of cardinality 2" /(n + 3):
01 n-10
1 0 n—1 0
1 1 n—4 2
0 0 n—1 1
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partition.
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Coset partition of a linear (Z4-linear) code is an equitable
partition.

Distance partition of a completely regular code is an equitable

partition (with 3-diagonal quotient matrix). E.g., perfect
codes, nearly perfect codes.

1-perfect codes:( 0 d >

1 d-1
0 n 0 O
. . ] 1 0 n-1 0
distance-5 Preparata-like codes: 0 2 n3 1
00 n O
Any distance-3 code of cardinality 2"/(n + 3):
01 n-1 0
1 0 n-1 0
1 1 n-4 2
0 0 n-11



Equitable partitions of distance-regular graph are distance
invariant:

Distance invariance (equitable partition)

The weight distributions of the cells C3, ..., Cx with respect to a
vertex X € C; depend only on i (do not depend on the choice of X

in C,)



o One of the most strong known generalizations of the distance
invariance of equitable partitions is the strong distance
invariance.
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the pairs (x,y) such that d(x,y) = a, d(v,y) = b,
d(v,x)=c, x€ C;, and y € Cy.




o One of the most strong known generalizations of the distance
invariance of equitable partitions is the strong distance
invariance.

o For a fixed vertex v from C;, let W,-"f’,f’c denotes the number of
the pairs (x,y) such that d(x,y) = a, d(v,y) = b,
d(v,x)=c, x€ C;, and y € Cy.

o The collection of all coefficients W,j?,fc is known as the
interweight distribution of the partition C with respect to
the vertex v.




The strong distance invariance means that the interweight
distribution (W32, , —§ j«1" of the partition with respect to a
vertex v from C; does not depend on the choice of v and depends
only on the quotient matrix and the parameters of the distance

regular graph.



The strong distance invariance means that the interweight
distribution (W3), , 8 j x1" of the partition with respect to a
vertex v from C; does not depend on the choice of v and depends
only on the quotient matrix and the parameters of the distance

regular graph.
Theorem (Vasil'eva, 2009)

The equitable partitions of the binary n-cubes are strongly distance
invariant.




The strong distance invariance means that the interweight
distribution (W3), , 8 j x1" of the partition with respect to a
vertex v from C; does not depend on the choice of v and depends
only on the quotient matrix and the parameters of the distance
regular graph.

Theorem (Vasil'eva, 2009)

The equitable partitions of the binary n-cubes are strongly distance
invariant.

This statement does not hold for the distance regular graphs in
general. Example: a union of three ternary 1-perfect codes.

= (17)



o | recursively (combinatorial arguments)

o ? direct formula (algebraic and combinatorial arguments ?)



o For given partition C = (Cy, ..., Ck), the spectrum of a
vertex set X is the k-tuple Sp(X) = (x1, ..., xk), where
Xj = |X N C,'|.
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For given partition C = (Cy, ..., Cx), the spectrum of a
vertex set X is the k-tuple Sp(X) = (x1, ..., xk), where

Xj = |X N C,'|.

In a natural way, the spectrum is generalized to multisets. If
X is a multiset, then x; is the sum over C; of the multiplicities
in X.

The multi-neighborhood QX of a vertex set X is a multiset

of the vertices of the graph, where the multiplicity of a vertex
is calculated as the number of its neighbors from X.

In other words, X is the multiset union of the neighborhoods
of the vertices from X.



Lemma

Let C be an equitable partition (of an arbitrary graph) with
quotient matrix S. For every vertex set X,

Sp(QX) = Sp(X) - S



Lemma

Let C be an equitable partition (of an arbitrary graph) with
quotient matrix S. For every vertex set X,

Sp(QX) = Sp(X) - S

Proof. From

AT=C-s

we get

X-A-C=X-C-S

and
QX-C=X-C-S

Sp(2X) = Sp(X) - S



o Let H" be the set of weight-w vertices of the n-cube,
w=20,1,...,n. Let C be an equitable partition with quotient
matrix S. Then

(Sp(H®), Sp(H"),....Sp(H"))

is called the weight distribution of C (with respect to 0).



o Let H" be the set of weight-w vertices of the n-cube,
w=20,1,...,n. Let C be an equitable partition with quotient
matrix S. Then

(Sp(H®), Sp(H"),....Sp(H"))

is called the weight distribution of C (with respect to 0).

o By Lemma, we have

Sp(H") - S = Sp(QHY).



Sp(H™) - S = Sp(QH")

The multi-neighborhood of H" consists of H*~1 with
multiplicity n — w + 1 and H**! with multiplicity w + 1.
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Sp(H*) - S = (n—w4+1)Sp(H* 1) + (w-+1)Sp(H**1).



Sp(H™) - S = Sp(QH")

The multi-neighborhood of H" consists of H*~1 with
multiplicity n — w + 1 and H**! with multiplicity w + 1.
o We conclude that

Sp(H") - S = (n—w+1)Sp(H" 1) + (w+1)Sp(H" ).
o Hence,

Sp(H") - S — (n—w+1)Sp(H"1)
(w+1)

Sp(H"*1) = = Sp(H°)-M“*Y(S)

where 1" is a polinomial of degree w.



Sp(H"*1) = Sp(H) - N"*1(S)

It is known that
M(:) = Pw(Pr ()

where P, is the Krawtchouk polynomial

Pulx) = Z( y (5) (0

— X



Calculating the weight distribution (algebraic way)

-C=C-N(S) for every polinomial 1
Nw(A)- C=C-N"(S) for N"(-) = P,(P; (")

AW . C =C-N"(S) where A" is the distance-w
adjacency matrix of the n-cube.
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Calculating the weight distribution (algebraic way)

o Al.C=C-S" for every power i

)- C= C-T(S) for every polinomial I
Nw(A)-C=C-N"(S) for N"(-) = Py (P; ("))
AW . C =C-N"(S) where A™ is the distance-w
adjacency matrix of the n-cube.



= C-S' for every power i

C=C-N(S) for every polinomial



©oA-C=C-S
©A-A-C=A-C-5=C-S§-5§

o Al.C=C-S" for every power i

o N(A)-C=C-N(S) for every polinomial I

o MY(A)-T=C-M(S) for M"() = Pu(P ()



A-C=C-S
A-A-C=A-C-5=C-5-5
A.C=C-S" for every power |
M(A)- C = C-N(S) for every polinomial N

M¥(A)- C=C-N*($) for () = Pu(Pr ()

AW . C=C-N"(S) where A" is the distance-w
adjacency matrix of the n-cube.



Let, for integer ri, ra, r3, the (i,J, k)-entry of the 3-dimensional
array T = (Tijr.}(”z’“),-k,-’k denotes the number of triples
(v, x,y) of vertices such that

o d(v,x)=n+n,dv,y)=n-+rnmndxy)=rn+rn,
ove(G, xe(,ye (.

.’Y




If C as an equitable partition of the n-cube, then, because of the
strong distance invariance,

r,r,rn
rn+r,ntr,ntrn ik

ok el



Theorem

Let C = (Cy,...,Cp) be an equitable partition of the n-cube with
quotient matrix S. Then

T e § = (r2+1)Tr1,rz+1,r3—1 + (r3+1)7'r1,f2—1,r3+1
+(n—r1—r2—r3+1)Trl*l’rz’r?’ + (r1+1)Tr1+1,f2,r3,

T ey § = (r1+1)Tr1+1’r2’r3_1 + (r3+1)Tr1—1,f2,f3+1
+(n—r1—r2—r3+1)Trl’r2_17’3 + (r2+1)Tr1,r2+1,r37

T 5§ = (r1+1)Tr1+1,r2—1,r3 + (r2+1)Tr1—1,r2+1,r3
+(n—n—r—r+1) T2 4 (py])ToRstl

where T 1S, T 2 S, and T e3 S denote the arrays with entries
Yoty TeiSeis >opeq TiexSyjo and Y 7" TijeSek, respectively.



X [r1+r2,0,1] 600 N [r1+r2,0,r3]

[n+r—-1,1,0]

[n+1,n—1,n]

[r1,r2,0] [r1,r2,1] con | [r1,r2,3—1] [r1,r2,r3] [r1,r2,r341]

[n—1,n+1,r]

[1,I’1+r271,0]

14 [0,r1+r2,1] coo e [0,r1+r2,r3]

Q[rl,rg,rg,] = (r1+1) - [n+1,n—1,r3] + (I’2—|—1) - [n—=1,n+1,r3]
+ (n—n—r—r+1)-[nmnrs-1+ (B+1) - (1wt




Trl,r27r3 o S — (r2_|_1) Trl,r2+1,r3—1 + (r3+1)-,-r1,r2—1,r3+1
+(n—r—r—r+1)TH7b2s 4 (n41)TtbRs

TR ey S = (n41) Tntlrns-1 (r3_|_1)','r1—1,r27f3+1
‘|‘(I’)—I’1—r2—r3-i-1)Trl’rzfl’r3 + (r2+1)-,-r1,r2+1,r3

T2rs o3 S = (r+1) Trtlre=lrs (r2+1)Tf1*17f2+1J3
+(n—n—r—r4+1) T2 4 (1) Teetl




The polynomial

Corollary

Trorns — 70,00 N2 (e1S, 8,5, 035)

where M2 js a polynomial of degree ri + r» + r3 in three
variables.



Corollary
Trorsrs — 70,00 N2 (e;S, 0,5, 835)
where M2 js a polynomial of degree ri + r» + r3 in three

variables.

70,00

o Starting: TI%O’O = |G|, all other elements of are 0.



Corollary
Trorsrs — 70,00 N2 (e;S, 0,5, 835)
where M2 js a polynomial of degree ri + r» + r3 in three

variables.

70,00

o Starting: TI%O’O = |G|, all other elements of are 0.

o Problem. To find an explicit formula for [171:72:73,
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Theorem (D. Fon-Der-Flaass, 2007)

If there exists an equitable partition of the n-cube with quotient

matrix
a b
c d

and b # c, then ¢ — a < n/3 (the second eigenvalue of the matrix
< n/3).




Theorem (D. Fon-Der-Flaass, 2007)

If there exists an equitable partition of the n-cube with quotient

matrix
a b
c d

and b # ¢, then ¢ — a < n/3 (the second eigenvalue of the matrix
< n/3).

o Empiric fact, n < 36. For an array

a b

c d
n=a+b=c+d, b#c, c—a< n/3, calculation of T3
gives negative values.



Theorem (D. Fon-Der-Flaass, 2007)

If there exists an equitable partition of the n-cube with quotient

matrix
a b
c d

and b # ¢, then ¢ — a < n/3 (the second eigenvalue of the matrix
< n/3).

o Empiric fact, n < 36. For an array

a b

c d
n=a+b=c+d, b#c, c—a< n/3, calculation of T3
gives negative values.

o Problem. Explain!
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Thank you for your attention!

May The Force be with you!



