On calculation of the interweight distribution of an equitable partition

Denis Krotov

Sobolev Institute of Mathematics, Novosibirsk, Russia

2012 KIAS Int. Conference on Coding Theory and Applications November 15-17 2012, KIAS, SEOUL, KOREA

Definitions

- Examples of equitable partitions
- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you

Definitions

• Examples of equitable partitions

- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you

- Definitions
- Examples of equitable partitions
- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you

- Definitions
- Examples of equitable partitions
- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you

- Definitions
- Examples of equitable partitions
- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you

- Definitions
- Examples of equitable partitions
- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you

- Definitions
- Examples of equitable partitions
- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you

- Definitions
- Examples of equitable partitions
- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you

Let
$$G = (V(G), E(G))$$
 be a graph.

Definition

A partition (C_1, \ldots, C_k) of V(G) is an equitable partition with quotient matrix $S = (S_{ij})_{i,j=1}^k$ iff every element of C_i is adjacent with exactly S_{ij} elements of C_i .

Equitable partitions \sim regular partitions \sim partition designs \sim perfect colorings $\sim \ldots$

Example: Equitable partition

Incidence matrix of an equitable partition

Adjacency matrix

A۰

Matrix equation for equitable partition

A – adjacency matrix of the graph; \overline{C} – incidence matrix of an equitable partition with quotient matrix S.

$A\overline{C} = \overline{C}S$

- Coset partition of a linear (Z4-linear) code is an equitable partition.
- Distance partition of a completely regular code is an equitable partition (with 3-diagonal quotient matrix). E.g., perfect codes, nearly perfect codes.

• 1-perfect codes: $\begin{pmatrix} 0 & d \\ 1 & d-1 \end{pmatrix}$

• distance-5 Preparata-like codes:

$$\left(\begin{array}{rrrr} 0 & n & 0 & 0 \\ 1 & 0 & n-1 & 0 \\ 0 & 2 & n-3 & 1 \\ 0 & 0 & n & 0 \end{array}\right)$$

$$\left(\begin{array}{cccc} 0 & 1 & n-1 & 0 \\ 1 & 0 & n-1 & 0 \\ 1 & 1 & n-4 & 2 \\ 0 & 0 & n-1 & 1 \end{array} \right)$$

- Coset partition of a linear (Z4-linear) code is an equitable partition.
- Distance partition of a completely regular code is an equitable partition (with 3-diagonal quotient matrix). E.g., perfect codes, nearly perfect codes.

• distance-5 Preparata-like codes:

$$: \left(\begin{array}{rrrr} 0 & n & 0 & 0 \\ 1 & 0 & n-1 & 0 \\ 0 & 2 & n-3 & 1 \\ 0 & 0 & n & 0 \end{array}\right)$$

$$\left(\begin{array}{ccccc} 0 & 1 & n-1 & 0 \\ 1 & 0 & n-1 & 0 \\ 1 & 1 & n-4 & 2 \\ 0 & 0 & n-1 & 1 \end{array} \right)$$

- Coset partition of a linear (Z4-linear) code is an equitable partition.
- Distance partition of a completely regular code is an equitable partition (with 3-diagonal quotient matrix). E.g., perfect codes, nearly perfect codes.

• 1-perfect codes:
$$\begin{pmatrix} 0 & d \\ 1 & d-1 \end{pmatrix}$$

• distance-5 Preparata-like codes:

$$: \left(\begin{array}{rrrr} 0 & n & 0 & 0 \\ 1 & 0 & n-1 & 0 \\ 0 & 2 & n-3 & 1 \\ 0 & 0 & n & 0 \end{array}\right)$$

$$\left(\begin{array}{ccccc} 0 & 1 & n-1 & 0 \\ 1 & 0 & n-1 & 0 \\ 1 & 1 & n-4 & 2 \\ 0 & 0 & n-1 & 1 \end{array} \right)$$

- Coset partition of a linear (Z4-linear) code is an equitable partition.
- Distance partition of a completely regular code is an equitable partition (with 3-diagonal quotient matrix). E.g., perfect codes, nearly perfect codes.

• 1-perfect codes:
$$\left(egin{array}{cc} 0 & d \ 1 & d{-1} \end{array}
ight)$$

• distance-5 Preparata-like codes:

$$\left(\begin{array}{rrrr} 0 & n & 0 & 0 \\ 1 & 0 & n-1 & 0 \\ 0 & 2 & n-3 & 1 \\ 0 & 0 & n & 0 \end{array}\right)$$

$$\left(\begin{array}{cccc} 0 & 1 & n-1 & 0 \\ 1 & 0 & n-1 & 0 \\ 1 & 1 & n-4 & 2 \\ 0 & 0 & n-1 & 1 \end{array} \right)$$

- Coset partition of a linear (Z4-linear) code is an equitable partition.
- Distance partition of a completely regular code is an equitable partition (with 3-diagonal quotient matrix). E.g., perfect codes, nearly perfect codes.

• 1-perfect codes:
$$\begin{pmatrix} 0 & d \\ 1 & d-1 \end{pmatrix}$$

• distance-5 Preparata-like codes:

$$: \left(\begin{array}{rrrr} 0 & n & 0 & 0 \\ 1 & 0 & n-1 & 0 \\ 0 & 2 & n-3 & 1 \\ 0 & 0 & n & 0 \end{array}\right)$$

$$\left(egin{array}{ccccc} 0 & 1 & n{-}1 & 0 \ 1 & 0 & n{-}1 & 0 \ 1 & 1 & n{-}4 & 2 \ 0 & 0 & n{-}1 & 1 \end{array}
ight)$$

Distance invariance of equitable partitions

Equitable partitions of distance-regular graph are distance invariant:

Distance invariance (equitable partition)

The weight distributions of the cells C_1, \ldots, C_k with respect to a vertex $\overline{x} \in C_i$ depend only on *i* (do not depend on the choice of \overline{x} in C_i).

Interweight distribution

- One of the most strong known generalizations of the distance invariance of equitable partitions is the strong distance invariance.
- For a fixed vertex v from C_i, let W^{abc}_{ijk} denotes the number of the pairs (x, y) such that d(x, y) = a, d(v, y) = b, d(v, x) = c, x ∈ C_j, and y ∈ C_k.
- The collection of all coefficients W_{ijk}^{abc} is known as the **interweight distribution** of the partition *C* with respect to the vertex *v*.

Interweight distribution

- One of the most strong known generalizations of the distance invariance of equitable partitions is the strong distance invariance.
- For a fixed vertex v from C_i, let W^{abc}_{ijk} denotes the number of the pairs (x, y) such that d(x, y) = a, d(v, y) = b, d(v, x) = c, x ∈ C_i, and y ∈ C_k.
- The collection of all coefficients W_{ijk}^{abc} is known as the **interweight distribution** of the partition *C* with respect to the vertex *v*.

Interweight distribution

- One of the most strong known generalizations of the distance invariance of equitable partitions is the strong distance invariance.
- For a fixed vertex v from C_i, let W^{abc}_{ijk} denotes the number of the pairs (x, y) such that d(x, y) = a, d(v, y) = b, d(v, x) = c, x ∈ C_j, and y ∈ C_k.
- The collection of all coefficients W_{ijk}^{abc} is known as the **interweight distribution** of the partition *C* with respect to the vertex *v*.

The **strong distance invariance** means that the interweight distribution $(W_{ijk}^{abc})_{a,b,c=0} \stackrel{d}{}_{j,k=1}^{m}$ of the partition with respect to a vertex v from C_i does not depend on the choice of v and depends only on the quotient matrix and the parameters of the distance regular graph.

Theorem (Vasil'eva, 2009)

The equitable partitions of the binary n-cubes are strongly distance invariant.

This statement does not hold for the distance regular graphs in general. Example: a union of three ternary 1-perfect codes.

$$S = \begin{pmatrix} 0 & 8 \\ 1 & 7 \end{pmatrix}$$

The **strong distance invariance** means that the interweight distribution $(W_{ijk}^{abc})_{a,b,c=0} \stackrel{d}{}_{j,k=1}^{m}$ of the partition with respect to a vertex v from C_i does not depend on the choice of v and depends only on the quotient matrix and the parameters of the distance regular graph.

Theorem (Vasil'eva, 2009)

The equitable partitions of the binary n-cubes are strongly distance invariant.

This statement does not hold for the distance regular graphs in general. Example: a union of three ternary 1-perfect codes.

$$S = \begin{pmatrix} 0 & 8 \\ 1 & 7 \end{pmatrix}$$

The **strong distance invariance** means that the interweight distribution $(W_{ijk}^{abc})_{a,b,c=0} \stackrel{d}{}_{j,k=1}^{m}$ of the partition with respect to a vertex v from C_i does not depend on the choice of v and depends only on the quotient matrix and the parameters of the distance regular graph.

Theorem (Vasil'eva, 2009)

The equitable partitions of the binary n-cubes are strongly distance invariant.

This statement does not hold for the distance regular graphs in general. Example: a union of three ternary 1-perfect codes.

$$S = \begin{pmatrix} 0 & 8 \\ 1 & 7 \end{pmatrix}$$

How to calculate the interweight distribution?

- ! recursively (combinatorial arguments)
- ? direct formula (algebraic and combinatorial arguments ?)

- For given partition C = (C₁,..., C_k), the spectrum of a vertex set X is the k-tuple Sp(X) = (x₁,...,x_k), where x_i = |X ∩ C_i|.
- In a natural way, the spectrum is generalized to multisets. If X is a multiset, then x_i is the sum over C_i of the multiplicities in X.
- The **multi-neighborhood** ΩX of a vertex set X is a multiset of the vertices of the graph, where the multiplicity of a vertex is calculated as the number of its neighbors from X.
- In other words, ΩX is the multiset union of the neighborhoods of the vertices from X.

- For given partition C = (C₁,..., C_k), the spectrum of a vertex set X is the k-tuple Sp(X) = (x₁,..., x_k), where x_i = |X ∩ C_i|.
- In a natural way, the spectrum is generalized to multisets. If X is a multiset, then x_i is the sum over C_i of the multiplicities in X.
- The **multi-neighborhood** ΩX of a vertex set X is a multiset of the vertices of the graph, where the multiplicity of a vertex is calculated as the number of its neighbors from X.
- In other words, ΩX is the multiset union of the neighborhoods of the vertices from X.

- For given partition C = (C₁,..., C_k), the spectrum of a vertex set X is the k-tuple Sp(X) = (x₁,..., x_k), where x_i = |X ∩ C_i|.
- In a natural way, the spectrum is generalized to multisets. If X is a multiset, then x_i is the sum over C_i of the multiplicities in X.
- The **multi-neighborhood** ΩX of a vertex set X is a multiset of the vertices of the graph, where the multiplicity of a vertex is calculated as the number of its neighbors from X.
- In other words, ΩX is the multiset union of the neighborhoods of the vertices from X.

- For given partition C = (C₁,..., C_k), the spectrum of a vertex set X is the k-tuple Sp(X) = (x₁,..., x_k), where x_i = |X ∩ C_i|.
- In a natural way, the spectrum is generalized to multisets. If X is a multiset, then x_i is the sum over C_i of the multiplicities in X.
- The **multi-neighborhood** ΩX of a vertex set X is a multiset of the vertices of the graph, where the multiplicity of a vertex is calculated as the number of its neighbors from X.
- In other words, ΩX is the multiset union of the neighborhoods of the vertices from X.

Spectrum of the multi-neighborhood

Lemma

Let C be an equitable partition (of an arbitrary graph) with quotient matrix S. For every vertex set X,

 $\operatorname{Sp}(\Omega X) = \operatorname{Sp}(X) \cdot S$

Proof. From

 $A \cdot \overline{C} = \overline{C} \cdot S$

we get

 $\overline{X} \cdot A \cdot \overline{C} = \overline{X} \cdot \overline{C} \cdot S$

and

 $\overline{\Omega X} \cdot \overline{C} = \overline{X} \cdot \overline{C} \cdot S$ $\operatorname{Sp}(\Omega X) = \operatorname{Sp}(X) \cdot S$

Spectrum of the multi-neighborhood

Lemma

Let C be an equitable partition (of an arbitrary graph) with quotient matrix S. For every vertex set X,

 $\operatorname{Sp}(\Omega X) = \operatorname{Sp}(X) \cdot S$

Proof. From

$$A \cdot \overline{C} = \overline{C} \cdot S$$

we get

 $\overline{X} \cdot A \cdot \overline{C} = \overline{X} \cdot \overline{C} \cdot S$

and

$$\overline{\Omega X} \cdot \overline{C} = \overline{X} \cdot \overline{C} \cdot S$$
$$\operatorname{Sp}(\Omega X) = \operatorname{Sp}(X) \cdot S$$

Calculating the usual weight distribution

Let H^w be the set of weight-w vertices of the n-cube,
 w = 0, 1, ..., n. Let C be an equitable partition with quotient matrix S. Then

$$\left(\operatorname{Sp}(H^0), \operatorname{Sp}(H^1), \dots, \operatorname{Sp}(H^n)\right)$$

is called the weight distribution of C (with respect to $\overline{0}$). By Lemma, we have

 $\operatorname{Sp}(H^w) \cdot S = \operatorname{Sp}(\Omega H^w).$

Calculating the usual weight distribution

Let H^w be the set of weight-w vertices of the n-cube,
 w = 0, 1, ..., n. Let C be an equitable partition with quotient matrix S. Then

$$\left(\operatorname{Sp}(H^0), \operatorname{Sp}(H^1), \dots, \operatorname{Sp}(H^n)\right)$$

is called the weight distribution of C (with respect to 0).
By Lemma, we have

$$\operatorname{Sp}(H^w) \cdot S = \operatorname{Sp}(\Omega H^w).$$

Calculating the weight distribution

۲

$$\operatorname{Sp}(H^w) \cdot S = \operatorname{Sp}(\Omega H^w)$$

The multi-neighborhood of H^w consists of H^{w-1} with multiplicity n - w + 1 and H^{w+1} with multiplicity w + 1. We conclude that

$$Sp(H^w) \cdot S = (n-w+1)Sp(H^{w-1}) + (w+1)Sp(H^{w+1})$$

Hence,

$$\operatorname{Sp}(H^{w+1}) = \frac{\operatorname{Sp}(H^w) \cdot S - (n-w+1)\operatorname{Sp}(H^{w-1})}{(w+1)} = \operatorname{Sp}(H^0) \cdot \Pi^{w+1}(S)$$

where Π^{w} is a polynomial of degree w.

Calculating the weight distribution

۲

$$\operatorname{Sp}(H^w) \cdot S = \operatorname{Sp}(\Omega H^w)$$

The multi-neighborhood of H^w consists of H^{w-1} with multiplicity n - w + 1 and H^{w+1} with multiplicity w + 1.

We conclude that

$$\operatorname{Sp}(H^w) \cdot S = (n - w + 1) \operatorname{Sp}(H^{w-1}) + (w + 1) \operatorname{Sp}(H^{w+1}).$$

Hence,

$$\operatorname{Sp}(H^{w+1}) = \frac{\operatorname{Sp}(H^w) \cdot S - (n - w + 1)\operatorname{Sp}(H^{w-1})}{(w+1)} = \operatorname{Sp}(H^0) \cdot \Pi^{w+1}(S)$$

where Π^{w} is a polynomial of degree w.

Calculating the weight distribution

۲

$$\operatorname{Sp}(H^w) \cdot S = \operatorname{Sp}(\Omega H^w)$$

The multi-neighborhood of H^w consists of H^{w-1} with multiplicity n - w + 1 and H^{w+1} with multiplicity w + 1.

We conclude that

$$\operatorname{Sp}(H^w) \cdot S = (n - w + 1) \operatorname{Sp}(H^{w-1}) + (w + 1) \operatorname{Sp}(H^{w+1})$$

Hence,

$$\operatorname{Sp}(H^{w+1}) = \frac{\operatorname{Sp}(H^w) \cdot S - (n - w + 1)\operatorname{Sp}(H^{w-1})}{(w+1)} = \operatorname{Sp}(H^0) \cdot \Pi^{w+1}(S)$$

where Π^{w} is a polynomial of degree w.

$$\operatorname{Sp}(H^{w+1}) = \operatorname{Sp}(H^0) \cdot \Pi^{w+1}(S)$$

It is known that

$$\Pi^w(\cdot) = P_w(P_1^{-1}(\cdot))$$

where P_w is the Krawtchouk polynomial

$$P_w(x) = P_w(x; n) = \sum_{j=0}^w (-1)^j \binom{x}{j} \binom{n-x}{w-j}.$$

• $A \cdot \overline{C} = \overline{C} \cdot S$

•
$$A \cdot A \cdot \overline{C} = A \cdot \overline{C} \cdot S = \overline{C} \cdot S \cdot S$$

- $A^i \cdot \overline{C} = \overline{C} \cdot S^i$ for every power *i*
- $\Pi(A) \cdot \overline{C} = \overline{C} \cdot \Pi(S)$ for every polynomial Π
- $\Pi^w(A) \cdot \overline{C} = \overline{C} \cdot \Pi^w(S)$ for $\Pi^w(\cdot) = P_w(P_1^{-1}(\cdot))$
- $A^{(w)} \cdot \overline{C} = \overline{C} \cdot \Pi^w(S)$ where $A^{(w)}$ is the distance-*w* adjacency matrix of the *n*-cube.

• $A \cdot \overline{C} = \overline{C} \cdot S$

- $A \cdot A \cdot \overline{C} = A \cdot \overline{C} \cdot S = \overline{C} \cdot S \cdot S$
- $A^i \cdot \overline{C} = \overline{C} \cdot S^i$ for every power *i*
- $\Pi(A) \cdot \overline{C} = \overline{C} \cdot \Pi(S)$ for every polynomial Π
- $\Pi^w(A) \cdot \overline{C} = \overline{C} \cdot \Pi^w(S)$ for $\Pi^w(\cdot) = P_w(P_1^{-1}(\cdot))$
- $A^{(w)} \cdot \overline{C} = \overline{C} \cdot \Pi^w(S)$ where $A^{(w)}$ is the distance-*w* adjacency matrix of the *n*-cube.

- $A \cdot \overline{C} = \overline{C} \cdot S$
- $A \cdot A \cdot \overline{C} = A \cdot \overline{C} \cdot S = \overline{C} \cdot S \cdot S$
- $A^i \cdot \overline{C} = \overline{C} \cdot S^i$ for every power *i*
- $\Pi(A) \cdot \overline{C} = \overline{C} \cdot \Pi(S)$ for every polinomial Π
- $\Pi^w(A) \cdot \overline{C} = \overline{C} \cdot \Pi^w(S)$ for $\Pi^w(\cdot) = P_w(P_1^{-1}(\cdot))$
- $A^{(w)} \cdot \overline{C} = \overline{C} \cdot \Pi^w(S)$ where $A^{(w)}$ is the distance-*w* adjacency matrix of the *n*-cube.

- $A \cdot \overline{C} = \overline{C} \cdot S$
- $A \cdot A \cdot \overline{C} = A \cdot \overline{C} \cdot S = \overline{C} \cdot S \cdot S$
- $A^i \cdot \overline{C} = \overline{C} \cdot S^i$ for every power *i*
- $\Pi(A) \cdot \overline{C} = \overline{C} \cdot \Pi(S)$ for every polynomial Π
- $\Pi^w(A) \cdot \overline{C} = \overline{C} \cdot \Pi^w(S)$ for $\Pi^w(\cdot) = P_w(P_1^{-1}(\cdot))$
- $A^{(w)} \cdot \overline{C} = \overline{C} \cdot \Pi^w(S)$ where $A^{(w)}$ is the distance-*w* adjacency matrix of the *n*-cube.

- $A \cdot \overline{C} = \overline{C} \cdot S$
- $A \cdot A \cdot \overline{C} = A \cdot \overline{C} \cdot S = \overline{C} \cdot S \cdot S$
- $A^i \cdot \overline{C} = \overline{C} \cdot S^i$ for every power *i*
- $\Pi(A) \cdot \overline{C} = \overline{C} \cdot \Pi(S)$ for every polynomial Π
- $\Pi^w(A) \cdot \overline{C} = \overline{C} \cdot \Pi^w(S)$ for $\Pi^w(\cdot) = P_w(P_1^{-1}(\cdot))$
- $A^{(w)} \cdot \overline{C} = \overline{C} \cdot \Pi^w(S)$ where $A^{(w)}$ is the distance-*w* adjacency matrix of the *n*-cube.

•
$$A \cdot \overline{C} = \overline{C} \cdot S$$

• $A \cdot A \cdot \overline{C} = A \cdot \overline{C} \cdot S = \overline{C} \cdot S \cdot S$
• $A^i \cdot \overline{C} = \overline{C} \cdot S^i$ for every power *i*
• $\Pi(A) \cdot \overline{C} = \overline{C} \cdot \Pi(S)$ for every polynomial Π
• $\Pi^w(A) \cdot \overline{C} = \overline{C} \cdot \Pi^w(S)$ for $\Pi^w(\cdot) = P_w(P_1^{-1}(\cdot))$

•
$$A^{(w)} \cdot \overline{C} = \overline{C} \cdot \Pi^w(S)$$
 where $A^{(w)}$ is the distance-*w* adjacency matrix of the *n*-cube.

Integral interweight distribution

Let, for integer r_1 , r_2 , r_3 , the (i, j, k)-entry of the 3-dimensional array $T^{r_1, r_2, r_3} = (T^{r_1, r_2, r_3}_{ijk})_{i,j,k}$ denotes the number of triples (v, x, y) of vertices such that

d(v,x) = r₁ + r₂, d(v,y) = r₁ + r₃, d(x,y) = r₂ + r₃,
v ∈ C_i, x ∈ C_j, y ∈ C_k.

Int. interweight distribution \sim interweight distribution

If C as an equitable partition of the *n*-cube, then, because of the strong distance invariance,

$$W_{ijk}^{r_2+r_3,r_1+r_3,r_1+r_2} = \frac{T_{ijk}^{r_1,r_2,r_3}}{|C_i|}$$

Theorem

Let $C = (C_1, ..., C_m)$ be an equitable partition of the n-cube with quotient matrix S. Then

$$T^{r_1,r_2,r_3} \bullet_1 S = (r_2+1)T^{r_1,r_2+1,r_3-1} + (r_3+1)T^{r_1,r_2-1,r_3+1} + (n-r_1-r_2-r_3+1)T^{r_1-1,r_2,r_3} + \underline{(r_1+1)T^{r_1+1,r_2,r_3}},$$

$$T^{r_1,r_2,r_3} \bullet_2 S = (r_1+1)T^{r_1+1,r_2,r_3-1} + (r_3+1)T^{r_1-1,r_2,r_3+1} + (n-r_1-r_2-r_3+1)T^{r_1,r_2-1,r_3} + \underline{(r_2+1)T^{r_1,r_2+1,r_3}},$$

$$T^{r_1,r_2,r_3} \bullet_3 S = (r_1+1)T^{r_1+1,r_2-1,r_3} + (r_2+1)T^{r_1-1,r_2+1,r_3} + (n-r_1-r_2-r_3+1)T^{r_1,r_2,r_3-1} + \underline{(r_3+1)T^{r_1,r_2,r_3+1}},$$

where $T \bullet_1 S$, $T \bullet_2 S$, and $T \bullet_3 S$ denote the arrays with entries $\sum_{t=1}^{m} T_{tjk}S_{ti}$, $\sum_{t=1}^{m} T_{itk}S_{tj}$, and $\sum_{t=1}^{m} T_{ijt}S_{tk}$, respectively.

x	$[r_1+r_2,0,1]$	 	$[r_1+r_2,0,r_3]$		 $v+\overline{1}$
$[r_1+r_2-1,1,0]$		 			
		 	$[r_1+1,r_2-1,r_3]$		
[<i>r</i> ₁ , <i>r</i> ₂ ,0]	$[r_1, r_2, 1]$	 $[r_1, r_2, r_3 - 1]$	$[r_1, r_2, r_3]$	$[r_1, r_2, r_3+1]$	
		 	$[r_1 - 1, r_2 + 1, r_3]$		
•••		 			
$[1,r_1+r_2-1,0]$		 			
v	$[0,r_1+r_2,1]$	 	$[0,r_1+r_2,r_3]$		 $x+\overline{1}$

 $\Omega[r_1, r_2, r_3] = (r_1+1) \cdot [r_1+1, r_2-1, r_3] + (r_2+1) \cdot [r_1-1, r_2+1, r_3]$ $+ (n-r_1-r_2-r_3+1) \cdot [r_1, r_2, r_3-1] + (r_3+1) \cdot [r_1, r_2, r_3+1]$

Recursions for the integral interweight distribution

$$T^{r_1,r_2,r_3} \bullet_1 S = (r_2+1)T^{r_1,r_2+1,r_3-1} + (r_3+1)T^{r_1,r_2-1,r_3+1} + (n-r_1-r_2-r_3+1)T^{r_1-1,r_2,r_3} + \underline{(r_1+1)T^{r_1+1,r_2,r_3}},$$

$$T^{r_1,r_2,r_3} \bullet_2 S = (r_1+1)T^{r_1+1,r_2,r_3-1} + (r_3+1)T^{r_1-1,r_2,r_3+1} + (n-r_1-r_2-r_3+1)T^{r_1,r_2-1,r_3} + \underline{(r_2+1)T^{r_1,r_2+1,r_3}},$$

$$T^{r_1,r_2,r_3} \bullet_3 S = (r_1+1)T^{r_1+1,r_2-1,r_3} + (r_2+1)T^{r_1-1,r_2+1,r_3} + (n-r_1-r_2-r_3+1)T^{r_1,r_2,r_3-1} + \underline{(r_3+1)T^{r_1,r_2,r_3+1}},$$

The polynomial

Corollary

$$T^{r_1,r_2,r_3} = T^{0,0,0} \cdot \Pi^{r_1,r_2,r_3}(\bullet_1 S, \bullet_2 S, \bullet_3 S)$$

where Π^{r_1,r_2,r_3} is a polynomial of degree $r_1 + r_2 + r_3$ in three variables.

- Starting: $T_{iii}^{0,0,0} = |C_i|$, all other elements of $T^{0,0,0}$ are 0.
- **Problem.** To find an explicit formula for Π^{r_1, r_2, r_3} .

The polynomial

Corollary

$$T^{r_1,r_2,r_3} = T^{0,0,0} \cdot \Pi^{r_1,r_2,r_3}(\bullet_1 S, \bullet_2 S, \bullet_3 S)$$

where Π^{r_1,r_2,r_3} is a polynomial of degree $r_1 + r_2 + r_3$ in three variables.

Starting: T^{0,0,0}_{iii} = |C_i|, all other elements of T^{0,0,0} are 0.
Problem. To find an explicit formula for Π^{r1,r2,r3}.

The polynomial

Corollary

$$T^{r_1,r_2,r_3} = T^{0,0,0} \cdot \Pi^{r_1,r_2,r_3}(\bullet_1 S, \bullet_2 S, \bullet_3 S)$$

where Π^{r_1,r_2,r_3} is a polynomial of degree $r_1 + r_2 + r_3$ in three variables.

- Starting: $T_{iii}^{0,0,0} = |C_i|$, all other elements of $T^{0,0,0}$ are 0.
- **Problem.** To find an explicit formula for Π^{r_1, r_2, r_3} .

Connection with Terwilliger algebra

🖹 💿 filenamesearch - / - Dolphin							
File Edit View Go Tools Settings Help							
🔶 🧼 📰	📰 🔢 🎉 Find 🕎 Preview 🕂 Split						
🛅 Home	8 Find Terw						
🧕 Network	Filename Content From Here (Library) Everywhere						
🛅 Root	Name						
道 Trash	🕂 ಶ 88. Terwilliger. The classification of distance-regular graphs of type IIB.djvu						
🗊 93.1 GiB	->> 09. Vasil'eva. Local and interweight spectra of completely regular codes and of perfect c						
2 78.0 GiB	— 📡 10. Juisic, Terwilliger, Zitnik. The Q-polynomial idempotent of a distance-regular graph.pdf						
	10. Juisic, Terwilliger, Zitnik. The Q-polynomial idempotent of a distance-regular graph.pdf						
E Data	- 📡 02. Go. The Terwilliger Algebra of the Hypercube.pdf						
	─ ≫ 11. Benkart, Terwilliger. The equitable basis for SL2.pdf						
	🛛 — 🃡 92. Terwilliger. The Subconstituent Algebra of an Association Scheme, (Part I).pdf						
	— 📡 08. Jurisic, Terwilliger. Pseudo 1-homogeneous distance-regular graphs.pdf						
	- 🕞 05. Terwilliger. The Displacement and Split Decompositions for a Q-Polynomial Distance-re						
	— 📡 88. Terwilliger. Balanced sets and Q-polynomial association schemes.pdf						
	— 📡 00. Jurisic, Koolen, Terwilliger. Tight Distance-Regular Graphs.pdf						
	— 📡 93. Terwilliger. The Subconstituent Algebra of an Association Scheme (Part II).pdf						
	— 📡 93. Terwilliger. The Subconstituent Algebra of an Association Scheme (Part III).pdf						
	└─≫ 05. Schrijver. New Code Upper Bounds From the Terwilliger Algebra and Semidefinite Prog						
	14 Files (6,2 MiB)						

Theorem (D. Fon-Der-Flaass, 2007)

If there exists an equitable partition of the n-cube with quotient matrix

$$\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)$$

and $b \neq c$, then $c - a \leq n/3$ (the second eigenvalue of the matrix $\leq n/3$).

• **Empiric fact**, $n \leq 36$. For an array

$$\left(\begin{array}{cc}
a & b\\
c & d
\end{array}\right)$$

n = a + b = c + d, $b \neq c$, c - a < n/3, calculation of T^{r_1, r_2, r_3} gives negative values.

• **Problem.** Explain!

Theorem (D. Fon-Der-Flaass, 2007)

If there exists an equitable partition of the n-cube with quotient matrix

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$$

and $b \neq c$, then $c - a \leq n/3$ (the second eigenvalue of the matrix $\leq n/3$).

• Empiric fact, $n \leq 36$. For an array

$$\left(\begin{array}{cc}
a & b\\
c & d
\end{array}\right)$$

n = a + b = c + d, $b \neq c$, c - a < n/3, calculation of T^{r_1, r_2, r_3} gives negative values.

• **Problem.** Explain!

Theorem (D. Fon-Der-Flaass, 2007)

If there exists an equitable partition of the n-cube with quotient matrix

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$$

and $b \neq c$, then $c - a \leq n/3$ (the second eigenvalue of the matrix $\leq n/3$).

• Empiric fact, $n \leq 36$. For an array

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$$

n = a + b = c + d, $b \neq c$, c - a < n/3, calculation of T^{r_1, r_2, r_3} gives negative values.

• **Problem.** Explain!

Quotient matrices

Thank you for your attention! May The Force be with you!