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Equitable partitions

Let G = (V (G ),E (G )) be a graph.

Definition

A partition (C1, . . . ,Ck) of V (G ) is an equitable partition with
quotient matrix S = (Sij)

k
i ,j=1 iff every element of Ci is adjacent

with exactly Sij elements of Cj .

Equitable partitions ∼ regular partitions ∼ partition designs ∼
perfect colorings ∼ . . .



Example: Equitable partition

S =

0
BBBBB@

1 2 0

1 0 2

0 2 1

1
CCCCCA



Incidence matrix of an equitable partition

C : 0 0 1
0 0 1
0 1 0
0 1 0
0 0 1
0 1 0
0 0 1
0 1 0
1 0 0
1 0 0



Adjacency matrix

A: 0 0 0 0 1 0 0 1 1 0
0 0 1 0 0 0 1 0 0 1
0 1 0 1 0 0 0 0 0 1
0 1 0 0 0 1 0 0 1 0
0 0 0 1 1 0 1 0 0 0
1 0 0 0 0 1 0 0 0 1
0 0 1 0 0 1 0 1 0 0
1 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 1 1 0 0
0 1 1 0 1 0 0 0 0 0



Matrix equation for equitable partition

A – adjacency matrix of the graph; C – incidence matrix of an
equitable partition with quotient matrix S .

AC = CS
0 1 1 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0
1 0 0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 1 0 0
1 0 0 0 0 1 0 0 0 1
0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 0 0 1 0
0 1 0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 1
0 0 0 0 1 0 0 1 1 0

·

1 0 0
1 0 0
0 1 0
0 0 1
0 1 0
0 0 1
0 1 0
0 1 0
0 0 1
0 0 1

=

1 0 0
1 0 0
0 1 0
0 0 1
0 1 0
0 0 1
0 1 0
0 1 0
0 0 1
0 0 1

·
1 2 0
1 0 2
0 2 1



Equitable partitions in coding theory

Coset partition of a linear (Z4-linear) code is an equitable
partition.

Distance partition of a completely regular code is an equitable
partition (with 3-diagonal quotient matrix). E.g., perfect
codes, nearly perfect codes.

1-perfect codes:

(
0 d
1 d−1

)

distance-5 Preparata-like codes:




0 n 0 0
1 0 n−1 0
0 2 n−3 1
0 0 n 0




Any distance-3 code of cardinality 2n/(n + 3):


0 1 n−1 0
1 0 n−1 0
1 1 n−4 2
0 0 n−1 1



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Distance invariance of equitable partitions

Equitable partitions of distance-regular graph are distance
invariant:

Distance invariance (equitable partition)

The weight distributions of the cells C1, . . . , Ck with respect to a
vertex x ∈ Ci depend only on i (do not depend on the choice of x
in Ci ).



Interweight distribution

One of the most strong known generalizations of the distance
invariance of equitable partitions is the strong distance
invariance.

For a fixed vertex v from Ci , let W abc
ijk denotes the number of

the pairs (x , y) such that d(x , y) = a, d(v , y) = b,
d(v , x) = c , x ∈ Cj , and y ∈ Ck .

The collection of all coefficients W abc
ijk is known as the

interweight distribution of the partition C with respect to
the vertex v .
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Strong distance invariance of equitable partitions

The strong distance invariance means that the interweight
distribution (W abc

ijk ) d
a,b,c=0

m
j ,k=1 of the partition with respect to a

vertex v from Ci does not depend on the choice of v and depends
only on the quotient matrix and the parameters of the distance
regular graph.

Theorem (Vasil’eva, 2009)

The equitable partitions of the binary n-cubes are strongly distance
invariant.

This statement does not hold for the distance regular graphs in
general. Example: a union of three ternary 1-perfect codes.

S =

(
0

1

8

7

)
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How to calculate the interweight distribution?

! recursively (combinatorial arguments)

? direct formula (algebraic and combinatorial arguments ?)



Spectrum, multi-neighborhood

For given partition C = (C1, . . . ,Ck), the spectrum of a
vertex set X is the k-tuple Sp(X ) = (x1, . . . , xk), where
xi = |X ∩ Ci |.
In a natural way, the spectrum is generalized to multisets. If
X is a multiset, then xi is the sum over Ci of the multiplicities
in X .

The multi-neighborhood ΩX of a vertex set X is a multiset
of the vertices of the graph, where the multiplicity of a vertex
is calculated as the number of its neighbors from X .

In other words, ΩX is the multiset union of the neighborhoods
of the vertices from X .
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Spectrum of the multi-neighborhood

Lemma

Let C be an equitable partition (of an arbitrary graph) with
quotient matrix S. For every vertex set X ,

Sp(ΩX ) = Sp(X ) · S

Proof. From
A · C = C · S

we get
X · A · C = X · C · S

and
ΩX · C = X · C · S

Sp(ΩX ) = Sp(X ) · S
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Calculating the usual weight distribution

Let Hw be the set of weight-w vertices of the n-cube,
w = 0, 1, . . . , n. Let C be an equitable partition with quotient
matrix S . Then

(
Sp(H0), Sp(H1), . . . ,Sp(Hn)

)

is called the weight distribution of C (with respect to 0).

By Lemma, we have

Sp(Hw ) · S = Sp(ΩHw ).
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Calculating the weight distribution

Sp(Hw ) · S = Sp(ΩHw )

The multi-neighborhood of Hw consists of Hw−1 with
multiplicity n − w + 1 and Hw+1 with multiplicity w + 1.

We conclude that

Sp(Hw ) · S = (n−w+1)Sp(Hw−1) + (w+1)Sp(Hw+1).

Hence,

Sp(Hw+1) =
Sp(Hw ) · S − (n−w+1)Sp(Hw−1)

(w + 1)
= Sp(H0)·Πw+1(S)

where Πw is a polinomial of degree w .
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Calculating the weight distribution

Sp(Hw+1) = Sp(H0) · Πw+1(S)

It is known that
Πw (·) = Pw (P−1

1 (·))

where Pw is the Krawtchouk polynomial

Pw (x) = Pw (x ; n) =
w∑

j=0

(−1)j
(
x

j

)(
n − x

w − j

)
.



Calculating the weight distribution (algebraic way)

A · C = C · S

A · A · C = A · C · S = C · S · S

Ai · C = C · S i for every power i

Π(A) · C = C · Π(S) for every polinomial Π

Πw (A) · C = C · Πw (S) for Πw (·) = Pw (P−1
1 (·))

A(w) · C = C · Πw (S) where A(w) is the distance-w
adjacency matrix of the n-cube.
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Integral interweight distribution

Let, for integer r1, r2, r3, the (i , j , k)-entry of the 3-dimensional
array T r1,r2,r3 = (T r1,r2,r3

ijk )i ,j ,k denotes the number of triples
(v , x , y) of vertices such that

d(v , x) = r1 + r2, d(v , y) = r1 + r3, d(x , y) = r2 + r3,

v ∈ Ci , x ∈ Cj , y ∈ Ck .



Int. interweight distribution ∼ interweight distribution

If C as an equitable partition of the n-cube, then, because of the
strong distance invariance,

W r2+r3,r1+r3,r1+r2
ijk =

T r1,r2,r3
ijk

|Ci |



Recursions for the integral interweight distribution

Theorem

Let C = (C1, . . . ,Cm) be an equitable partition of the n-cube with
quotient matrix S. Then

T r1,r2,r3 •1 S = (r2+1)T r1,r2+1,r3−1 + (r3+1)T r1,r2−1,r3+1

+(n−r1−r2−r3+1)T r1−1,r2,r3 + (r1+1)T r1+1,r2,r3 ,

T r1,r2,r3 •2 S = (r1+1)T r1+1,r2,r3−1 + (r3+1)T r1−1,r2,r3+1

+(n−r1−r2−r3+1)T r1,r2−1,r3 + (r2+1)T r1,r2+1,r3 ,

T r1,r2,r3 •3 S = (r1+1)T r1+1,r2−1,r3 + (r2+1)T r1−1,r2+1,r3

+(n−r1−r2−r3+1)T r1,r2,r3−1 + (r3+1)T r1,r2,r3+1,

where T •1 S, T •2 S, and T •3 S denote the arrays with entries∑m
t=1 TtjkSti ,

∑m
t=1 TitkStj , and

∑m
t=1 TijtStk , respectively.



Proof

x [r1+r2,0,1] . . . . . . [r1+r2,0,r3] . . . . . . v + 1̄

[r1+r2−1,1,0] . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . [r1+1,r2−1,r3] . . . . . . . . .

[r1,r2,0] [r1,r2,1] . . . [r1,r2,r3−1] [r1,r2,r3] [r1,r2,r3+1] . . . . . .

. . . . . . . . . . . . [r1−1,r2+1,r3] . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

[1,r1+r2−1,0] . . . . . . . . . . . . . . . . . .

v [0,r1+r2,1] . . . . . . [0,r1+r2,r3] . . . . . . x + 1̄

Ω[r1,r2,r3] = (r1+1) · [r1+1,r2−1,r3] + (r2+1) · [r1−1,r2+1,r3]

+ (n−r1−r2−r3+1) · [r1,r2,r3−1] + (r3+1) · [r1,r2,r3+1]



Recursions for the integral interweight distribution
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The polynomial

Corollary

T r1,r2,r3 = T 0,0,0 · Πr1,r2,r3(•1S , •2S , •3S)

where Πr1,r2,r3 is a polynomial of degree r1 + r2 + r3 in three
variables.

Starting: T 0,0,0
iii = |Ci |, all other elements of T 0,0,0 are 0.

Problem. To find an explicit formula for Πr1,r2,r3 .
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Connection with Terwilliger algebra



The correlation-immunity bound

Theorem (D. Fon-Der-Flaass, 2007)

If there exists an equitable partition of the n-cube with quotient
matrix (

a b
c d

)

and b 6= c, then c − a ≤ n/3 (the second eigenvalue of the matrix
≤ n/3).

Empiric fact, n ≤ 36. For an array

(
a b
c d

)

n = a + b = c + d , b 6= c , c − a < n/3, calculation of T r1,r2,r3

gives negative values.

Problem. Explain!
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n = a + b = c + d , b 6= c , c − a < n/3, calculation of T r1,r2,r3

gives negative values.

Problem. Explain!



Quotient matrices



Thank you!

Thank you for your attention!

May The Force be with you!


