On calculation of the interweight distribution of an equitable partition

Denis Krotov

Sobolev Institute of Mathematics, Novosibirsk, Russia
2012 KIAS Int. Conference on Coding Theory and Applications November 15-17 2012, KIAS, SEOUL, KOREA

Outline

- Definitions
- Examples of equitable partitions
- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you
- Definitions
- Examples of equitable partitions
- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you
- Definitions
- Examples of equitable partitions
- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you
- Definitions
- Examples of equitable partitions
- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you
- Definitions
- Examples of equitable partitions
- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you
- Definitions
- Examples of equitable partitions
- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you
- Definitions
- Examples of equitable partitions
- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you
- Definitions
- Examples of equitable partitions
- Distance invariance of e. p.
- Interweight distribution and strong distance invariance
- Calculating weight distribution of e. p.
- Calculating interweight distribution of e. p.
- Problems and conclusion
- Thank you

Let $G=(V(G), E(G))$ be a graph.

Definition

A partition $\left(C_{1}, \ldots, C_{k}\right)$ of $V(G)$ is an equitable partition with quotient matrix $S=\left(S_{i j}\right)_{i, j=1}^{k}$ iff every element of C_{i} is adjacent with exactly $S_{i j}$ elements of C_{j}.

Equitable partitions \sim regular partitions \sim partition designs \sim perfect colorings $\sim \ldots$

A:

0	1	1	0	1	0	0	0	0	0
1	0	0	0	0	0	1	1	0	0
1	0	0	1	0	0	0	0	1	0
0	0	1	0	0	1	0	1	0	0
1	0	0	0	0	1	0	0	0	1
0	0	0	1	1	0	1	0	0	0
0	1	0	0	0	1	0	0	1	0
0	1	0	1	0	0	0	0	0	1
0	0	1	0	0	0	1	0	0	1
0	0	0	0	1	0	0	1	1	0

A - adjacency matrix of the graph; \bar{C} - incidence matrix of an equitable partition with quotient matrix S.

$$
A \bar{C}=\bar{C} S
$$

\(\left.\left.$$
\begin{array}{|llllllllll}\hline 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}
$$\right] \cdot\left[$$
\begin{array}{lll}1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1\end{array}
$$\right]=\begin{array}{|ccc|}\hline 1 \& 0 \& 0

1 \& 0 \& 0

0 \& 1 \& 0

0 \& 0 \& 1

0 \& 1 \& 0

0 \& 0 \& 1

0 \& 1 \& 0

0 \& 1 \& 0

0 \& 0 \& 1

0 \& 0 \& 1\end{array}\right] \cdot\)| 1 | 2 | 0 |
| :--- | :--- | :--- |
| 1 | 0 | 2 |
| 0 | 2 | 1 |

Equitable partitions in coding theory

- Coset partition of a linear (Z4-linear) code is an equitable partition.
- Distance partition of a completely regular code is an equitable partition (with 3-diagonal quotient matrix). E.g., perfect codes, nearly perfect codes.

- distance-5 Preparata-like codes: $\left(\begin{array}{cccc}0 & n & 0 & 0 \\ 1 & 0 & n-1 & 0 \\ 0 & 2 & n-3 & 1 \\ 0 & 0 & n & 0\end{array}\right)$
- Any distance-3 code of cardinality $2^{n} /(n+3)$:
$\left(\begin{array}{cccc}0 & 1 & n-1 & 0 \\ 1 & 0 & n-1 & 0 \\ 1 & 1 & n-4 & 2 \\ 0 & 0 & n-1 & 1\end{array}\right)$
- Coset partition of a linear (Z4-linear) code is an equitable partition.
- Distance partition of a completely regular code is an equitable partition (with 3-diagonal quotient matrix). E.g., perfect codes, nearly perfect codes.

- Any distance-3 code of cardinality $2^{n} /(n+3)$:
$\left(\begin{array}{llll}0 & 1 & n-1 & 0 \\ 1 & 0 & n-1 & 0 \\ 1 & 1 & n-4 & 2 \\ 0 & 0 & n-1 & 1\end{array}\right)$
- Coset partition of a linear (Z4-linear) code is an equitable partition.
- Distance partition of a completely regular code is an equitable partition (with 3-diagonal quotient matrix). E.g., perfect codes, nearly perfect codes.
- 1-perfect codes: $\left(\begin{array}{cc}0 & d \\ 1 & d-1\end{array}\right)$

- Any distance-3 code of cardinality $2^{n} /(n+3)$:

- Coset partition of a linear (Z4-linear) code is an equitable partition.
- Distance partition of a completely regular code is an equitable partition (with 3-diagonal quotient matrix). E.g., perfect codes, nearly perfect codes.
- 1-perfect codes: $\left(\begin{array}{cc}0 & d \\ 1 & d-1\end{array}\right)$
- distance-5 Preparata-like codes: $\left(\begin{array}{cccc}0 & n & 0 & 0 \\ 1 & 0 & n-1 & 0 \\ 0 & 2 & n-3 & 1 \\ 0 & 0 & n & 0\end{array}\right)$

- Coset partition of a linear (Z4-linear) code is an equitable partition.
- Distance partition of a completely regular code is an equitable partition (with 3-diagonal quotient matrix). E.g., perfect codes, nearly perfect codes.
- 1-perfect codes: $\left(\begin{array}{cc}0 & d \\ 1 & d-1\end{array}\right)$
- distance-5 Preparata-like codes: $\left(\begin{array}{cccc}0 & n & 0 & 0 \\ 1 & 0 & n-1 & 0 \\ 0 & 2 & n-3 & 1 \\ 0 & 0 & n & 0\end{array}\right)$
- Any distance-3 code of cardinality $2^{n} /(n+3)$:

$$
\left(\begin{array}{cccc}
0 & 1 & n-1 & 0 \\
1 & 0 & n-1 & 0 \\
1 & 1 & n-4 & 2 \\
0 & 0 & n-1 & 1
\end{array}\right)
$$

Equitable partitions of distance-regular graph are distance invariant:

Distance invariance (equitable partition)

The weight distributions of the cells C_{1}, \ldots, C_{k} with respect to a vertex $\bar{x} \in C_{i}$ depend only on i (do not depend on the choice of \bar{x} in C_{i}).

- One of the most strong known generalizations of the distance invariance of equitable partitions is the strong distance invariance.
For a fixed vertex v from C_{i}, let $W_{i j k}^{a b c}$ denotes the number of the pairs (x, y) such that $d(x, y)=a, d(v, y)=b$, $d(v, x)=c, x \in C_{j}$, and $y \in C_{k}$. The collection of all coefficients $W_{i j k}^{a b c}$ is known as the interweight distribution of the partition C with respect to the vertex v.

- One of the most strong known generalizations of the distance invariance of equitable partitions is the strong distance invariance.
- For a fixed vertex v from C_{i}, let $W_{i j k}^{a b c}$ denotes the number of the pairs (x, y) such that $d(x, y)=a, d(v, y)=b$, $d(v, x)=c, x \in C_{j}$, and $y \in C_{k}$.
The collection of all coefficients $W_{i j k}^{a b c}$ is known as the
interweight distribution of the partition C with respect to the vertex v.

- One of the most strong known generalizations of the distance invariance of equitable partitions is the strong distance invariance.
- For a fixed vertex v from C_{i}, let $W_{i j k}^{a b c}$ denotes the number of the pairs (x, y) such that $d(x, y)=a, d(v, y)=b$, $d(v, x)=c, x \in C_{j}$, and $y \in C_{k}$.
- The collection of all coefficients $W_{i j k}^{a b c}$ is known as the interweight distribution of the partition C with respect to the vertex v.

The strong distance invariance means that the interweight distribution $\left(W_{i j k}^{a b c}\right)_{a, b, c=0}{ }_{j}^{d, k=1}{ }_{d}^{m}$ of the partition with respect to a vertex v from C_{i} does not depend on the choice of v and depends only on the quotient matrix and the parameters of the distance regular graph.

The equitable partitions of the binary n-cubes are strongly distance invariant.

This statement does not hold for the distance regular graphs in general. Example: a union of three ternary 1-perfect codes.

The strong distance invariance means that the interweight distribution $\left(W_{i j k}^{a b c}\right)_{a, b, c=0}{ }_{0}^{d, k=1}{ }_{j}^{m}$ of the partition with respect to a vertex v from C_{i} does not depend on the choice of v and depends only on the quotient matrix and the parameters of the distance regular graph.

Theorem (Vasil'eva, 2009)

The equitable partitions of the binary n-cubes are strongly distance invariant.

This statement does not hold for the distance regular graphs in general. Example: a union of three ternary 1-perfect codes.

The strong distance invariance means that the interweight distribution $\left(W_{i j k}^{a b c}\right)_{a, b, c=0}{ }_{j}^{d, k=1}{ }_{d}^{m}$ of the partition with respect to a vertex v from C_{i} does not depend on the choice of v and depends only on the quotient matrix and the parameters of the distance regular graph.

Theorem (Vasil'eva, 2009)

The equitable partitions of the binary n-cubes are strongly distance invariant.

This statement does not hold for the distance regular graphs in general. Example: a union of three ternary 1-perfect codes.

$$
S=\left(\begin{array}{ll}
0 & 8 \\
1 & 7
\end{array}\right)
$$

- ! recursively (combinatorial arguments)
- ? direct formula (algebraic and combinatorial arguments ?)

Spectrum, multi-neighborhood

- For given partition $C=\left(C_{1}, \ldots, C_{k}\right)$, the spectrum of a vertex set X is the k-tuple $\operatorname{Sp}(X)=\left(x_{1}, \ldots, x_{k}\right)$, where $x_{i}=\left|X \cap C_{i}\right|$.
- In a natural way, the spectrum is generalized to multisets. If X is a multiset, then x_{i} is the sum over C_{i} of the multiplicities
- The multi-neighborhood ΩX of a vertex set X is a multiset of the vertices of the graph, where the multiplicity of a vertex is calculated as the number of its neighbors from X.
- In other words, ΩX is the multiset union of the neighborhoods of the vertices from X.
- For given partition $C=\left(C_{1}, \ldots, C_{k}\right)$, the spectrum of a vertex set X is the k-tuple $\operatorname{Sp}(X)=\left(x_{1}, \ldots, x_{k}\right)$, where $x_{i}=\left|X \cap C_{i}\right|$.
- In a natural way, the spectrum is generalized to multisets. If X is a multiset, then x_{i} is the sum over C_{i} of the multiplicities in X.
- The multi-neighborhood ΩX of a vertex set X is a multiset of the vertices of the graph, where the multiplicity of a vertex is calculated as the number of its neighbors from X.
- In other words, ΩX is the multiset union of the neighborhoods of the vertices from X.
- For given partition $C=\left(C_{1}, \ldots, C_{k}\right)$, the spectrum of a vertex set X is the k-tuple $\operatorname{Sp}(X)=\left(x_{1}, \ldots, x_{k}\right)$, where $x_{i}=\left|X \cap C_{i}\right|$.
- In a natural way, the spectrum is generalized to multisets. If X is a multiset, then x_{i} is the sum over C_{i} of the multiplicities in X.
- The multi-neighborhood ΩX of a vertex set X is a multiset of the vertices of the graph, where the multiplicity of a vertex is calculated as the number of its neighbors from X.
n other words, ΩX is the multiset union of the neighborhoods of the vertices from X
- For given partition $C=\left(C_{1}, \ldots, C_{k}\right)$, the spectrum of a vertex set X is the k-tuple $\operatorname{Sp}(X)=\left(x_{1}, \ldots, x_{k}\right)$, where $x_{i}=\left|X \cap C_{i}\right|$.
- In a natural way, the spectrum is generalized to multisets. If X is a multiset, then x_{i} is the sum over C_{i} of the multiplicities in X.
- The multi-neighborhood ΩX of a vertex set X is a multiset of the vertices of the graph, where the multiplicity of a vertex is calculated as the number of its neighbors from X.
- In other words, ΩX is the multiset union of the neighborhoods of the vertices from X.

Lemma

Let C be an equitable partition (of an arbitrary graph) with quotient matrix S. For every vertex set X,

$$
\operatorname{Sp}(\Omega X)=\operatorname{Sp}(X) \cdot S
$$

Proof. From

we get

Lemma

Let C be an equitable partition (of an arbitrary graph) with quotient matrix S. For every vertex set X,

$$
\operatorname{Sp}(\Omega X)=\operatorname{Sp}(X) \cdot S
$$

Proof. From

$$
A \cdot \bar{C}=\bar{C} \cdot S
$$

we get

$$
\bar{X} \cdot A \cdot \bar{C}=\bar{X} \cdot \bar{C} \cdot S
$$

and

$$
\begin{aligned}
\overline{\Omega X} \cdot \bar{C} & =\bar{X} \cdot \bar{C} \cdot S \\
\operatorname{Sp}(\Omega X) & =\operatorname{Sp}(X) \cdot S
\end{aligned}
$$

- Let H^{w} be the set of weight- w vertices of the n-cube, $w=0,1, \ldots, n$. Let C be an equitable partition with quotient matrix S. Then

$$
\left(\operatorname{Sp}\left(H^{0}\right), \operatorname{Sp}\left(H^{1}\right), \ldots, \operatorname{Sp}\left(H^{n}\right)\right)
$$

is called the weight distribution of C (with respect to $\overline{0}$).

- By Lemma, we have

$$
\operatorname{Sp}\left(H^{w}\right) \cdot S=\operatorname{Sp}\left(\Omega H^{w}\right)
$$

- Let H^{w} be the set of weight- w vertices of the n-cube, $w=0,1, \ldots, n$. Let C be an equitable partition with quotient matrix S. Then

$$
\left(\operatorname{Sp}\left(H^{0}\right), \operatorname{Sp}\left(H^{1}\right), \ldots, \operatorname{Sp}\left(H^{n}\right)\right)
$$

is called the weight distribution of C (with respect to $\overline{0}$).

- By Lemma, we have

$$
\operatorname{Sp}\left(H^{w}\right) \cdot S=\operatorname{Sp}\left(\Omega H^{w}\right)
$$

-

$$
\operatorname{Sp}\left(H^{w}\right) \cdot S=\operatorname{Sp}\left(\Omega H^{w}\right)
$$

The multi-neighborhood of H^{w} consists of H^{w-1} with multiplicity $n-w+1$ and H^{w+1} with multiplicity $w+1$.
We conclude that

$$
\operatorname{Sp}\left(H^{w}\right) \cdot S=(n-w+1) \operatorname{Sp}\left(H^{w-1}\right)+(w+1) \operatorname{Sp}\left(H^{w+1}\right) .
$$

- Hence,
where Π^{w} is a polinomial of degree w.

0

$$
\operatorname{Sp}\left(H^{w}\right) \cdot S=\operatorname{Sp}\left(\Omega H^{w}\right)
$$

The multi-neighborhood of H^{w} consists of H^{w-1} with multiplicity $n-w+1$ and H^{w+1} with multiplicity $w+1$.

- We conclude that

$$
\operatorname{Sp}\left(H^{w}\right) \cdot S=(n-w+1) \operatorname{Sp}\left(H^{w-1}\right)+(w+1) \operatorname{Sp}\left(H^{w+1}\right)
$$

- Hence,
where Π^{w} is a polinomial of degree w.

$$
\operatorname{Sp}\left(H^{w}\right) \cdot S=\operatorname{Sp}\left(\Omega H^{w}\right)
$$

The multi-neighborhood of H^{w} consists of H^{w-1} with multiplicity $n-w+1$ and H^{w+1} with multiplicity $w+1$.

- We conclude that

$$
\operatorname{Sp}\left(H^{w}\right) \cdot S=(n-w+1) \operatorname{Sp}\left(H^{w-1}\right)+(w+1) \operatorname{Sp}\left(H^{w+1}\right)
$$

- Hence,

$$
\operatorname{Sp}\left(H^{w+1}\right)=\frac{\operatorname{Sp}\left(H^{w}\right) \cdot S-(n-w+1) \operatorname{Sp}\left(H^{w-1}\right)}{(w+1)}=\operatorname{Sp}\left(H^{0}\right) \cdot \Pi^{w+1}(S)
$$

where Π^{w} is a polinomial of degree w.

$$
\operatorname{Sp}\left(H^{w+1}\right)=\operatorname{Sp}\left(H^{0}\right) \cdot \Pi^{w+1}(S)
$$

It is known that

$$
\Pi^{w}(\cdot)=P_{w}\left(P_{1}^{-1}(\cdot)\right)
$$

where P_{w} is the Krawtchouk polynomial

$$
P_{w}(x)=P_{w}(x ; n)=\sum_{j=0}^{w}(-1)^{j}\binom{x}{j}\binom{n-x}{w-j} .
$$

Calculating the weight distribution (algebraic way)

- $A \cdot \bar{C}=\bar{C} \cdot S$
- $A \cdot A \cdot \bar{C}=A \cdot \bar{C} \cdot S=\bar{C} \cdot S \cdot S$
- $A^{i} \cdot \bar{C}=\bar{C} \cdot S^{i}$ for every power i
- $\Pi(A) \cdot \bar{C}=\bar{C} \cdot \Pi(S)$ for every polinomial Π
- $\Pi^{w}(A) \cdot \bar{C}=\bar{C} \cdot \Pi^{w}(S)$ for $\Pi^{w}(\cdot)=P_{w}\left(P_{1}^{-1}(\cdot)\right)$
- $A^{(w)} \cdot \bar{C}=\bar{C} \cdot \Pi^{w}(S)$ where $A^{(w)}$ is the distance-w adjacency matrix of the n-cube.

Calculating the weight distribution (algebraic way)

- $A \cdot \bar{C}=\bar{C} \cdot S$
- $A \cdot A \cdot \bar{C}=A \cdot \bar{C} \cdot S=\bar{C} \cdot S \cdot S$
- $A^{i} \cdot \bar{C}=\bar{C} \cdot S^{i}$ for every power i
- $\Pi(A) \cdot \bar{C}=\bar{C} \cdot \Pi(S)$ for every polinomial Π
- $\Pi^{w}(\Delta) \cdot \bar{C}=\bar{C} \cdot \Pi^{w}(S)$ for $\Pi^{w}(\cdot)=P_{w}\left(P_{1}^{-1}(\cdot)\right)$
- $A^{(w)} \cdot \bar{C}=\bar{C} \cdot \Pi^{w}(S)$ where $A^{(w)}$ is the distance-w adjacency matrix of the n-cube.

Calculating the weight distribution (algebraic way)

- $A \cdot \bar{C}=\bar{C} \cdot S$
- $A \cdot A \cdot \bar{C}=A \cdot \bar{C} \cdot S=\bar{C} \cdot S \cdot S$
- $A^{i} \cdot \bar{C}=\bar{C} \cdot S^{i}$ for every power i
- $\Pi(A) \cdot \bar{C}=\bar{C} \cdot \Pi(S)$ for every polinomial Π
- $\Pi^{w}(A) \cdot \bar{C}=\bar{C} \cdot \Pi^{w}(S)$ for $\Pi^{w}(\cdot)=P_{w}\left(P_{1}^{-1}(\cdot)\right)$
- $A^{(w)} \cdot \bar{C}=\bar{C} \cdot \Pi^{w}(S)$ where $A^{(w)}$ is the distance-w adjacency matrix of the n-cube.
- $A \cdot \bar{C}=\bar{C} \cdot S$
- $A \cdot A \cdot \bar{C}=A \cdot \bar{C} \cdot S=\bar{C} \cdot S \cdot S$
- $A^{i} \cdot \bar{C}=\bar{C} \cdot S^{i}$ for every power i
- $\Pi(A) \cdot \bar{C}=\bar{C} \cdot \Pi(S)$ for every polinomial Π

- $A^{(w)} \cdot \bar{C}=\bar{C} \cdot \Pi^{w}(S)$ where $A^{(w)}$ is the distance-w adjacency matrix of the n-cube.
- $A \cdot \bar{C}=\bar{C} \cdot S$
- $A \cdot A \cdot \bar{C}=A \cdot \bar{C} \cdot S=\bar{C} \cdot S \cdot S$
- $A^{i} \cdot \bar{C}=\bar{C} \cdot S^{i}$ for every power i
- $\Pi(A) \cdot \bar{C}=\bar{C} \cdot \Pi(S)$ for every polinomial Π
- $\Pi^{w}(A) \cdot \bar{C}=\bar{C} \cdot \Pi^{w}(S)$ for $\Pi^{w}(\cdot)=P_{w}\left(P_{1}^{-1}(\cdot)\right)$
- $A^{(w)} \cdot \bar{C}=\bar{C} \cdot \Pi^{w}(S)$ where $A^{(w)}$ is the distance-w
adjacency matrix of the n-cube.
- $A \cdot \bar{C}=\bar{C} \cdot S$
- $A \cdot A \cdot \bar{C}=A \cdot \bar{C} \cdot S=\bar{C} \cdot S \cdot S$
- $A^{i} \cdot \bar{C}=\bar{C} \cdot S^{i}$ for every power i
- $\Pi(A) \cdot \bar{C}=\bar{C} \cdot \Pi(S)$ for every polinomial Π
- $\Pi^{w}(A) \cdot \bar{C}=\bar{C} \cdot \Pi^{w}(S)$ for $\Pi^{w}(\cdot)=P_{w}\left(P_{1}^{-1}(\cdot)\right)$
- $A^{(w)} \cdot \bar{C}=\bar{C} \cdot \Pi^{w}(S)$ where $A^{(w)}$ is the distance- w adjacency matrix of the n-cube.

Let, for integer r_{1}, r_{2}, r_{3}, the (i, j, k)-entry of the 3 -dimensional array $T^{r_{1}, r_{2}, r_{3}}=\left(T_{i j k}^{r_{1}, r_{2}, r_{3}}\right)_{i, j, k}$ denotes the number of triples (v, x, y) of vertices such that

- $d(v, x)=r_{1}+r_{2}, d(v, y)=r_{1}+r_{3}, d(x, y)=r_{2}+r_{3}$,
- $v \in C_{i}, x \in C_{j}, y \in C_{k}$.

If C as an equitable partition of the n-cube, then, because of the strong distance invariance,

$$
W_{i j k}^{r_{2}+r_{3}, r_{1}+r_{3}, r_{1}+r_{2}}=\frac{T_{i j k}^{r_{1}, r_{2}, r_{3}}}{\left|C_{i}\right|}
$$

Theorem

Let $C=\left(C_{1}, \ldots, C_{m}\right)$ be an equitable partition of the n-cube with quotient matrix S. Then

$$
\begin{aligned}
T^{r_{1}, r_{2}, r_{3}} \bullet_{1} S= & \left(r_{2}+1\right) T^{r_{1}, r_{2}+1, r_{3}-1}+\left(r_{3}+1\right) T^{r_{1}, r_{2}-1, r_{3}+1} \\
& +\left(n-r_{1}-r_{2}-r_{3}+1\right) T^{r_{1}-1, r_{2}, r_{3}}+\underline{\left(r_{1}+1\right) T^{r_{1}+1, r_{2}, r_{3}}}, \\
T^{r_{1}, r_{2}, r_{3}} \bullet_{2} S= & \left(r_{1}+1\right) T^{r_{1}+1, r_{2}, r_{3}-1}+\left(r_{3}+1\right) T^{r_{1}-1, r_{2}, r_{3}+1} \\
& +\left(n-r_{1}-r_{2}-r_{3}+1\right) T^{r_{1}, r_{2}-1, r_{3}}+\underline{\left(r_{2}+1\right) T^{r_{1}, r_{2}+1, r_{3}}}, \\
T^{r_{1}, r_{2}, r_{3}} \bullet_{3} S= & \left(r_{1}+1\right) T^{r_{1}+1, r_{2}-1, r_{3}}+\left(r_{2}+1\right) T^{r_{1}-1, r_{2}+1, r_{3}} \\
& +\left(n-r_{1}-r_{2}-r_{3}+1\right) T^{r_{1}, r_{2}, r_{3}-1}+\underline{\left(r_{3}+1\right) T^{r_{1}, r_{2}, r_{3}+1}},
\end{aligned}
$$

where $T \bullet_{1} S, T \bullet_{2} S$, and $T \bullet_{3} S$ denote the arrays with entries $\sum_{t=1}^{m} T_{t j k} S_{t i}, \sum_{t=1}^{m} T_{i t k} S_{t j}$, and $\sum_{t=1}^{m} T_{i j t} S_{t k}$, respectively.

x	$\left[r_{1}+r_{2}, 0,1\right]$	\ldots	\ldots	$\left[r_{1}+r_{2}, 0, r_{3}\right]$	\ldots	\ldots	$v+\overline{1}$
$\left[r_{1}+r_{2}-1,1,0\right]$	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	
\ldots							
\ldots	\ldots	\ldots	\ldots	$\left[r_{1}+1, r_{2}-1, r_{3}\right]$	\ldots	\ldots	\ldots
$\left[r_{1}, r_{2}, 0\right]$	$\left[r_{1}, r_{2}, 1\right]$	\ldots	$\left[r_{1}, r_{2}, r_{3}-1\right]$	$\left[r_{1}, r_{2}, r_{3}\right]$	$\left[r_{1}, r_{2}, r_{3}+1\right]$	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	$\left[r_{1}-1, r_{2}+1, r_{3}\right]$	\ldots	\ldots	\ldots
\ldots							
$\left[1, r_{1}+r_{2}-1,0\right]$	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	
v	$\left[0, r_{1}+r_{2}, 1\right]$	\ldots	\ldots	$\left[0, r_{1}+r_{2}, r_{3}\right]$	\ldots	\ldots	$x+\overline{1}$

$$
\begin{aligned}
\Omega\left[r_{1}, r_{2}, r_{3}\right]=\quad & \left(r_{1}+1\right) \cdot\left[r_{1}+1, r_{2}-1, r_{3}\right]+\left(r_{2}+1\right) \cdot\left[r_{1}-1, r_{2}+1, r_{3}\right] \\
& +\left(n-r_{1}-r_{2}-r_{3}+1\right) \cdot\left[r_{1}, r_{2}, r_{3}-1\right]+\left(r_{3}+1\right) \cdot\left[r_{1}, r_{2}, r_{3}+1\right]
\end{aligned}
$$

$$
\begin{aligned}
T^{r_{1}, r_{2}, r_{3}} \bullet_{1} S= & \left(r_{2}+1\right) T^{r_{1}, r_{2}+1, r_{3}-1}+\left(r_{3}+1\right) T^{r_{1}, r_{2}-1, r_{3}+1} \\
& +\left(n-r_{1}-r_{2}-r_{3}+1\right) T^{r_{1}-1, r_{2}, r_{3}}+\underline{\left(r_{1}+1\right) T^{r_{1}+1, r_{2}, r_{3}}}, \\
T^{r_{1}, r_{2}, r_{3}} \bullet_{2} S= & \left(r_{1}+1\right) T^{r_{1}+1, r_{2}, r_{3}-1}+\left(r_{3}+1\right) T^{r_{1}-1, r_{2}, r_{3}+1} \\
& +\left(n-r_{1}-r_{2}-r_{3}+1\right) T^{r_{1}, r_{2}-1, r_{3}}+\underline{\left(r_{2}+1\right) T^{r_{1}, r_{2}+1, r_{3}}}, \\
T^{r_{1}, r_{2}, r_{3}} \bullet_{3} S= & \left(r_{1}+1\right) T^{r_{1}+1, r_{2}-1, r_{3}}+\left(r_{2}+1\right) T^{r_{1}-1, r_{2}+1, r_{3}} \\
& +\left(n-r_{1}-r_{2}-r_{3}+1\right) T^{r_{1}, r_{2}, r_{3}-1}+\underline{\left(r_{3}+1\right) T^{r_{1}, r_{2}, r_{3}+1}},
\end{aligned}
$$

Corollary

$$
T^{r_{1}, r_{2}, r_{3}}=T^{0,0,0} \cdot \Pi^{r_{1}, r_{2}, r_{3}}\left(\bullet_{1} S, \bullet_{2} S, \bullet_{3} S\right)
$$

where $\Pi^{r_{1}, r_{2}, r_{3}}$ is a polynomial of degree $r_{1}+r_{2}+r_{3}$ in three variables.

- Starting: $T_{\text {iii }}^{0,0,0}=\left|C_{i}\right|$, all other elements of $T^{0,0,0}$ are 0 .
- Problem. To find an explicit formula for $\Pi^{r_{1}, r_{2}, r_{3}}$.

Corollary

$$
T^{r_{1}, r_{2}, r_{3}}=T^{0,0,0} \cdot \Pi^{r_{1}, r_{2}, r_{3}}\left(\bullet_{1} S, \bullet_{2} S, \bullet_{3} S\right)
$$

where $\Pi^{r_{1}, r_{2}, r_{3}}$ is a polynomial of degree $r_{1}+r_{2}+r_{3}$ in three variables.

- Starting: $T_{i i i}^{0,0,0}=\left|C_{i}\right|$, all other elements of $T^{0,0,0}$ are 0 .
- Problem. To find an explicit formula for $\Pi^{r_{1}, r_{2}, r_{3}}$.

Corollary

$$
T^{r_{1}, r_{2}, r_{3}}=T^{0,0,0} \cdot \Pi^{r_{1}, r_{2}, r_{3}}\left(\bullet_{1} S, \bullet_{2} S, \bullet_{3} S\right)
$$

where $\Pi^{r_{1}, r_{2}, r_{3}}$ is a polynomial of degree $r_{1}+r_{2}+r_{3}$ in three variables.

- Starting: $T_{i i i}^{0,0,0}=\left|C_{i}\right|$, all other elements of $T^{0,0,0}$ are 0 .
- Problem. To find an explicit formula for $\Pi^{r_{1}, r_{2}, r_{3}}$.

Connection with Terwilliger algebra

filenamesearch - / - Dolphin

Theorem (D. Fon-Der-Flaass, 2007)

If there exists an equitable partition of the n-cube with quotient matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and $b \neq c$, then $c-a \leq n / 3$ (the second eigenvalue of the matrix $\leq n / 3)$.

- Empiric fact, $n \leq 36$. For an array

gives negative values.
- Problem. Explain!

Theorem (D. Fon-Der-Flaass, 2007)

If there exists an equitable partition of the n-cube with quotient matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and $b \neq c$, then $c-a \leq n / 3$ (the second eigenvalue of the matrix $\leq n / 3$).

- Empiric fact, $n \leq 36$. For an array

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

$n=a+b=c+d, b \neq c, c-a<n / 3$, calculation of $T^{r_{1}, r_{2}, r_{3}}$ gives negative values.

- Problem. Explain!

Theorem (D. Fon-Der-Flaass, 2007)

If there exists an equitable partition of the n-cube with quotient matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and $b \neq c$, then $c-a \leq n / 3$ (the second eigenvalue of the matrix $\leq n / 3$).

- Empiric fact, $n \leq 36$. For an array

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

$n=a+b=c+d, b \neq c, c-a<n / 3$, calculation of $T^{r_{1}, r_{2}, r_{3}}$ gives negative values.

- Problem. Explain!

| 8 | 9 | 10 | 1.1 | 12 | 1.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

 $88: 8$ Eatial

 R国

 ETESE! ETETETE:E?E!

$\begin{array}{cc}7 & 17 \\ 15 & 9\end{array}$

$\begin{array}{ll}0 & 16\end{array}$

$16 \quad 0$

$\begin{array}{cc}8 & 16 \\ 16 & 8\end{array}$
$\begin{array}{cc}9 & 16 \\ 16 & 0\end{array}$
$16 \quad 10$

Thank you!

Thank you for your attention! May The Force be with you!

